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The head-on collision between a normal shock wave, propagating into a quiescent
gas, and a rubber-supported plate was investigated theoretically and experimentally.
In the theoretical part, a physical model was developed for describing the collision
process. Three different modes in which the rubber could be loaded, due to its
collision with the incident shock wave, were studied. They are: uni-axial stress
loading, bi-axial stress loading and uni-axial strain loading. In the first two modes
the rubber can expand while carrying the shock-wave induced compressive load, and
therefore can be treated as an incompressible medium. This is not the case in a uni-
axial strain loading where the rubber cannot expand while carrying the shock-wave-
induced load. The model developed was based on both the conservation equations
and on an appropriate strain—stress relation which describes the rubber behaviour
under loading. The model was solved numerically for each of the above-mentioned
loading modes. Experiments were conducted in a shock tube; the rubber response to
its collision with normal shock wave was studied for the case of bi-axial stress
loading. Pressures, in the gas, and stresses, in the rubber, were recorded by using
piezoelectric pressure transducers; the shock-wave reflection, in the gas, and the
rubber displacement and compression processes were recorded on successive
shadowgraphs. Good agreement was found between the experimental and numerical
results for the case of bi-axial stress loading. This agreement validates the model
developed for the collision process and the reliability of the numerical scheme used
for its solution.
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238 G. Mazor

1. Introduction

Head-on reflection of normal shock waves from rigid boundaries is well known and
documented (Courant & Friedrichs 1948; Glass & Hall 1959). In such cases, the head-
on reflection phenomena is characterized by a zero flow velocity behind the reflected
shock wave. In nature, however, head-on reflection of normal shock waves from non-
rigid boundaries can occur. Cases in which one finds shock wave reflection from, and
propagation into, a non-rigid medium appear in many engineering problems. Some
typical examples are : reflection of blast waves from rubber-coated bodies that can be
found on a battle ground; shock-wave reflection from, and penetration into, live-
tissue such as in the case of litotherapy (shattering kidney and bladder stones by the
focusing of weak shock waves), and the interaction of shock waves with foams used
for pressure amplifications. It is therefore of interest to better understand the head-
on collision of normal shock waves with such boundaries. Alpher & Rubin (1954),
Meyer (1957) and Wlodarczyk (1980) extended the solution of shock-wave reflection
to the case of a head-on collision with a rigid boundary which is free to move. In such
a case, due to the pressure difference acting on the rigid wall, it accelerates in the
direction of the incident shock wave, and thereby transmits compression waves
ahead of it and expansion waves behind it. The compression waves will coalesce to
a shock wave while the expansion waves will overtake the reflected shock wave and
weaken it. This process continues until the pressure difference across the rigid wall
diminishes. At that time the shock wave produced by the moving wall and the wall
attain constant velocities, while the reflected shock wave is reduced to a Mach wave.

Beavers & Matta (1972) and Clarke (1984) studied the head-on reflection of weak
shock waves from rigid, porous materials. The aim of their work was to study how
porosity affects the strength of the reflecting shock wave. In their work it was
assumed that the porous material is dense enough to prevent transmission of an
incident shock wave through it, and that the reflected shock wave propagates at a
constant velocity. Under this assumption they developed an analytical model which
described the shock-wave reflection and the flow field through the porous material.

A few authors studied the head-on reflection of normal shock waves from solid
flexible boundaries. In these studies the reflecting boundary experienced a
deformation as a result of its head-on collision with the normal shock wave. Now the
boundary’s material elasticity is not ignored, as was the case in the previously cited
studies. The following cases of normal shock wave head-on reflection from solid,
flexible boundaries were studied.

1. Shock-wave reflection from a steady, solid, linearly elastic boundary (Pack
1957).

2. Shock-wave reflection from various solid, sponge-like materials (Muirhead
1958).

3. Shock-wave reflection from a stationary, solid wall which experiences some
deformation (Monti 1970).

4. Shock-wave attenuation in a stationary, flexible material (Wienfield & Hill
1977 ; Borisov et al. 1978).

5. Shock-wave reflection from a stationary, flexible porous foam (Gelfand et al.
1983).

6. Shock-wave reflection from a rigid wall, supported by a dumping system that
can experience deformation (Wlodarczyk 1981).

A critical review of the above-cited references can be found in Mazor (1989).

Phil. Trans. R. Soc. Lond. A (1992)
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Shock wave collision with a rubber wall 239

However, to the best of our knowledge, the more realistic and complicated case of
head-on reflection from nonlinear elastic boundaries, which can experience large
deformation, has not been treated as yet. It is the purpose of the present paper to
solve the entire flow field which results from a head-on collision of a normal shock
wave with a nonlinear elastic medium, for example rubber. Such a material can
experience large deformations in its elastic region. Thus, the waves system, which
results from the collision, as well as the flow properties behind these waves are
investigated both numerically and experimentally.

2. Theoretical background

The problem to be solved is shown schematically in figure 1. A normal shock wave
propagates in the gas from left to right at a constant velocity, V,. At time ¢{ = 0 the
shock wave collides, head-on, with a rigid plate, d (whose mass is w,), which is
supported by a rubber rod (having an initial length ,, and an initial cross-sectional
area 4,,). Following the collision, depending on the boundary conditions imposed on
the rubber rod, one of the following three loading modes are possible.

1. Unmi-axial stress. The rubber rod’s movement is limited only at its rear end,
along the z-axis, where it is attached to a rigid boundary. The rubber is free to
expand along the y- and z-axis, and its leading edge is free to move along the z-axis
(see figure 1a). In this case o0, =0, =0and ¢, = ¢, # 0.

2. Bi-axial stress. The rubber rod’s movements are limited at its rear end, along
the x-axis, as well as along the y-axis. (Due to its attachment to rigid boundaries at
these locations, see figure 1b). The rubber is free to expand along the z-axis and its
leading edge can move along the x-axis. In this case o, = 0 and ¢, = 0.

3. Uni-axial strain. The rubber movements along thc y- and z-axis and at its rear
end are limited by rigid walls (see figure 1¢). Only the rubber’s leading edge can move
along the z-axis. In this case ¢, = ¢, =0 and o, o, and o, # 0.

In the following, the conscrvatlon equations governlng the flow field developed in
the gaseous phase and the rubber motion are outlined using the lagrangian approach.
In developing these equations for the gaseous phase it is assumed that (a) the flow
is one-dimensional and the gas is an ideal fluid, i.e. inviscid (¢ = 0) and thermally
non-conductive (k = 0); (b) the gas can be treated as a perfect gas, i.e. its equation
of state is P = pR7T' and its internal energy is given by e = €, T where P, p and 7" are
the gas pressure, density and temperature, respectively; C, is its specific heat
capacity at constant volume, and R is the gas constant. This assumption is
reasonable for the moderate shock wave Mach numbers used in the present study ;
1 <M, < 4. (c) All body forces can be ignored.

In the lagrangian approach every mass element is identified by a number % which
marks its position in the wxt-plane. Generally A is chosen to identify the mass element
location at some reference time, say at ¢ = 0. In the present study it is convenient to
identify % on the basis of mass conservation. Consider a flow through a duct having
a constant cross-section area, A. The flow is along the duct axis which coincides with
the x-axis. Assigning the value 4 = 0 to some reference section in the duct (which
moves with the flow), then 2 expresses the mass contained in the duct between
section /# and the reference section, i.e.

z(h,t)
h = f pA de,

2(0,t)
where p is the density at location x at time ¢.

Phil. Trans. R. Soc. Lond. A (1992)


http://rsta.royalsocietypublishing.org/

/\
A

' \

e ol

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A \
' \

y 9

a

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

240 G. Mazor

(@) Q)

section A—A

(b) (2)

section A—A

Z

©r @

section A—A

Figure 1. Schematic illustration of three modes for applying a shock-wave-induced compressive
load: (@) uni-axial stress loading, (b) bi-axial stress loading, (¢) uni-axial strain loading.

The conservation of mass, in the gas flow, is easily obtained by taking the
derivative of

oh &

z(0,t) (3

v . 0x(hy, t
I =f pgAgdx, ie. pg(hg,t)—(g—)A =1.

Subscript g stands for the gaseous phase. Taking the time derivative of the last
expression yields the mass conservation equation, which is

0 0a(hg, t)
— 4 =
The flow velocity U, is defined as
Uy(hg, t) = 0x(hy,t)/0t. (2)

Using this definition, the conservation of momentum is easily obtained for the
considered perfect gas, i.e.

Py, ) 2 (hy, 1) /O = —OP(hy, 1) /0. (3)

g

Phil. Trans. R. Soc. Lond. A (1992)
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Shock wave collision with a rubber wall 241
Since
P (hy,t) E)P(hg,t)%
ox Oh,  Ox
and from,

x(h,t)
hy = f pgAgda

x(0,t)

we have 0h,/0x = p,(hy,t) A
replaced by

g therefore, the pressure derivative in (3) could be

1))z = (P (hy, 1) /Ohy) pylhy, 1) A

g
and (3) can be written as

OUy(hy, 1) /0t = — A, OP(hy, t)/Oh,. 4)
The conservation of energy, for the considered gas is
Oe(hy, t) /0t = — P(hy, t) OVy(hy, t) /0L, (5)

where e, the internal energy, is given by
e(hg, t) = C, T(hy,t)
and V,, the specific volume, is given by V, = 1/p,. From the equation of state we have
P(hg,t) = RT(hg, t)/ Vy(h (6)

In developing the conservation equations for thc rubber we make the following
assumptions.

1. The rubber medium is an isotropic elastic body and the changes in its internal
energy are negligibly small.

2. Body forces (gravity) and friction forces acting on the external surfaces of the
rubber rod are negligibly small. This assumption is perfectly right for the uni-axial
stress case. In the other two loading modes its validity depends on the ability to
reduce friction between the rubber and the rigid boundaries by using proper
lubrication.

3. Stresses developed in the rubber rod are uniformly distributed along any cross-
sectional area perpendicular to the x-axis. Therefore, the rubber’s cross-sectional
area remains planar throughout the deformation process.

4. The rubber rod does not buckle due to the compressive loads imposed on it by
the shock wave. The validity of this assumption depends upon the size of the rubber
rod and the strength of the colliding shock wave (see Mazor 1989). The conditions
chosen in the present study ensured that no buckling could occur.

The lagrangian variable for the rubber medium A, is defined as

SRy, t)
= [ g, as, )
8(0,t)
where subscript r stands for the rubber and § is the axial position of area 4, at time
t. Following the procedure described earlier the conservation of mass for the rubber
is
0
ot

S0 =8 a0 =0 ®)

For defining a particle velocity in the rubber medium let us consider a mass
element dm whose position at ¢t = 0 was = X, and its width was dX| (see figure 2).

Phil. Trans. R. Soc. Lond. A (1992)
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Figure 2 Figure 3
§ = E(Xov t)
e

3
o
>

(=]
2

T
B
N
I

S——

s

Figure 2. Tllustration of a mass element before and after deformation.

Figure 3. Illustration of a cubical element (free of stress) and its deformed geometry while carrying
a compressive load along the a-axis.

Due to the rubber deformation it moved to S and its width changed to dS. It is
apparent from figure 2 that S = X+ &, where £ is the magnitude of the displacement
along the S-axis. The rubber particle velocity is therefore

U(hy, t) = 0E(hy, 1)/t or U (hy, t) = 0S(hy, 1) /0L, 9)

The extension ratio in the x-direction, A, (reduction in case of compressive loads),
which expresses the ratio between the element’s width after and before the
deformation is therefore

Ay(hy, t) = 0S(h,, t)/0X,. (10)
From
0S(h,,t) _ 0S(h,,t) Oh,

X, oh, X,

and using the definition of A, (which can also be expressed as

h, = J ProAro dXo)
0
(10) can be rewritten as

AZ(}LI‘7 t) = p[‘OAI‘O aS(hI‘7 t)/ahm (11)

where subscript 0 indicates pre-deformation values. For a body under compressive
loads 0 < A <1, for tensile conditions A > 1, and when no load acts on the body
(stressless condition) A = 1.
For a mass element dm,dm = p.dS A4, = p,,dX 4., (see figure 2) Newton’s second
law implies
v, oF,

/’roAro‘a_tdeo = —&?dS;

in a lagrangian coordinate system this can be expressed as:

d oF
5 (AmUy) = -2 dX,, (12)
0

Substituting the expressions obtained for U, and dm yields
ProA g O°E/O1* = —0F, /0X,. (13)

Equation (13) represents the conservation of momentum for the rubber under
deformation.

Phil. Trans. R. Soc. Lond. A (1992)
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Shock wave collision with a rubber wall 243

The ‘nominal stress’ (sometimes called ‘engineering stress’) is defined as the ratio
between the normal force, acting on a given surface at time ¢, and the surface area
before deformation (i.e. at ¢ = 0);

O-(km ) = F(hr’ t)/ArO' (14)

For compressive loads o < 0 while under tension o > 0. Using the ‘nominal stress’
definition in (13) and taking the absolute value of o (i.e. |o(h,,1)|) yields (for both
compressive and tension loads):

0% (P, 1)/ 01 = = (1/pro) Doy by, )] /OX . (15)

|o,| is the absolute value of the nominal stress in the x-direction. Equation (15) is the
equation of motion for a rubber element. From (9) 0%(h,,t)/0t* = 0*S(h,,t)/0* and
from the definition of A, we obtain

a'o—x(hr’t)' _ alo-x(hr’ t)l% _ alo-x(hr’t)l A
oX,  oh, oX, 0Ok, Profi

Substituting the last two terms into (15) provides the equation of motion for the
rubber element in terms of the lagrangian variable 4., i.e.

0*S(h,.t) 4
T A2 T 4o

Ao, 0 Uilhest) _ Ayl
e T o,

o, N T LT (16)

Equations (1), (2), (4), (5), (6), (8), (9), (11) and (16) compose a set of nine equations
with eleven dependent variables (p,, P, T', Uy, X, p,, 0, A,, S, A, and U,). To make
this set solvable two additional equations are needed. The equations formulated so
far apply to a compressible solid medium under compressive loads. For rubber under
a uni-axial stress, or bi-axial stress, it is perfectly right to assume that the rubber rod
is incompressible. (Its volume remains constant during its loading.) For such a case
Pr = pro and the number of dependence variables is reduced to ten. The additional
equation needed for obtaining a closed set of equations is a relation between the
rubber stress and its extension ratio.

For describing a perfectly elastic body, relations between the three principal
stresses (o, o, and o, defined as o, = F;/4,) and the appropriate principal
extension ratios (A,, A, and A,; see figure 3) are needed. These relations can be
expressed in terms of the strain energy function W, which represents the work, per
unit volume, associated with the body’s deformation. In the following, a correlation
proposed for relating o and A is briefly presented. This correlation, based upon the
statistical theory, agrees well with available experimental data for rubber under
compressive loads (Treloar 1974). Other correlations were proposed for relating the
stress and strain in rubber. For example, the correlation based on the Valanis—Landel
(1967) hypothesis. In Mazor (1989) both the correlation based upon the statistical
theory and the one based on the Valanis-Landel hypothesis were used. Since both
yielded practically identical results for the computed rubber properties (Mazor 1989),
only the statistical theory is briefly presented in the following and shall be used in
the numerical solution.

(a) The statistical theory

For an incompressible rubber the principal stress oy, is (Treloar 1974)
oy = A OW/0A, =P, (17)
Phil. Trans. R. Soc. Lond. A (1992)
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244 G. Mazor

where ¢ = x, y or z and P is an arbitrary hydrostatic pressure. The relation between
the principal stress and the nominal stress (14) is,
oy =0u/A (L=w,y,2). (18)

From the molecular theory of rubber elasticity, which is based on a statistical
mechanics approach to the molecular chains composing the rubber, when there is no
change in the rubber’s internal energy the following equation describes the strain-
energy function W (Treloar 1974). This function W, represents the deformation work,
or the elastically stored energy, per unit volume of the material:

W = 3GAL+ A +A2—3], (19)

where ¢ = NkT is a constant determined by the network structure; N is the number
of molecular chains per unit volume and £ is the Boltzmann’s constant. It is apparent
from (19) that the deformation work (or strain energy) depends on one physical

parameter, . This parameter expresses the rubber elasticity and is dependent upon
N. Combining (17) and (19) yields

ou,=G\—P (i=u1y,z). (20)
The difference between the principal stresses can easily be obtained from (20);
o-t:v_o-ty = G[/\i_/\z]’ Oty — Oy, = Gl/\;_/\g] (21)
In the following the strain—stress relations for the three different loading modes,
defined earlier, are developed.

(b) Uni-axial stress loading
In the case shown in figure la, o, = o, = 0 and A, = A,. For an incompressible
medium A,A,A, =1 and therefore, A, =A, = A5 For this case, (21) yields
oy, = G[AZ—1/A,]. Together with (18) the nominal stress is given by
Ux(hr7t) = Gl/\x(hwt)_/\;z(hr?t)] (22)
In compression A, < 1 and therefore, o, (h,,t) < 0. Materials conforming with (22) are

called neo-hookean materials. Experiments made by Treloar (1958) verify that (22)
accurately describes rubber under compressive loads.

(¢) Bi-axial stress loading

In this case, shown in figure 156, A, = 1. For an incompressible material A, = A, *.
Substituting these into (18) and (21) yields

when the rubber’s lateral inertia could be ignored (o, = 0) one obtains for the
nominal stress in the x-direction:

o-z(hr’t) = Gl_/\z(hr?t)_/\;:j(hr’t)]a (24)
and for the nominal stress in the y-direction:
0y (e, t) = GLL—= A2 (A, 1)) (25)

(d) Uni-axial strain loading

Unlike the uni-axial and bi-axial stress cases, where it is safe to assume that the
rubber volume remains constant, in a uni-axial strain case the rubber will experience
a small reduction in its volume. Small because the rubber’s Poisson ratio is within the

Phil. Trans. R. Soc. Lond. A (1992)
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Shock wave collision with a rubber wall 245

range 0.47 < v < 0.5; materials having v = 0.5 do not change their volume under a
uni-axial stress condition. It is therefore reasonable to assume that the changes in the
rubber volume will be very small for the pressures generated by shock waves in the
range M, < 4. Based on this assumption the stress—strain relation for the case of a
uni-axial strain loading is subsequently derived. Since we are dealing with compress-
ive loads only, in the following we adopt the non-standard convention in which
strains (e, €,, €,) are positive in contraction and stresses are positive in compression.

For small rubber displacements (in a uni-axial strain loading) the following
relation can be used (Rivlin 1948)

€, = —0§/0X,, (26)

where £ is the displacement magnitude in the z-direction and e, is the strain in the
x-direction. Furthermore (see figure 2)

s

x—a—&)—a—XO(Xo‘i‘g)Zl—% (27)

When the rubber is free to expand in the y-direction its extension ratio in the
y-direction, is given by
A, = L+ve, (28)
where v is the Poisson ratio defined as v = —e¢,/e,.
It was shown that for a uni-axial stress condition, in the absence of lateral inertia,
the following stress—strain relation holds

O = G(AZ—=A2). (29)
Inserting (27) and (28) in (29) yields,
01 = Gl(1—6,)2— (1+ve,)?]. (30)

Rearranging (30) and neglecting second-order terms results in the following

approximation,
o, = 20(1+v)e,. (31)

In a uni-axial strain case (figure 1c¢) the rubber cross section does not change
(A,,=A,) and therefore, o,=o,. When the rubber’s Young modulus is
E = 2G(1+v) the expected hookean behaviour is obtained, i.e. o, = Fe, for tension
and o, = — Ee, for compression. Although the preceding results were obtained on the
basis of small displacements while considering a uni-axial stress condition, they are
applicable to a uni-axial strain case since at small displacements the rubber
deformation in the y and z axis is practically non-existent and therefore the
neglection of the lateral inertia is fully justified.

The fact that for a uni-axial strain case the rubber behaves like a linear elastic
material (under the assumption of small displacements) allows us to use the extended
Hooke law, i.e.

€y = (1/E) [o-x_V(o—y-i_o-z)]s
€y = (1/E) [o-y_V(o-z"_O_z)]’ (32)
e, = (1/B)[o,—v(o,+0,)].

Furthermore, in a uni-axial strain case ¢, = ¢, = 0. Introducing these values into (32)

results in
o, = —He,/[1—2V/(1—v)]. (33)

Phil. Trans. R. Soc. Lond. A (1992)
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Note that since we are dealing with compression, and not tension, a minus sign
appears in the above equation.

In (33) the Young modulus £, is equal to 2G(1 +v); (33) can therefore be rewritten
as

2G(1+v)
=T —1]. 4
The stresses in the y- and z-directions can easily be obtained for the present condition
(from (32)). They are

oty = 2 -1 @5)

oyl t) = 0y (hy, 1) = 1—py—212

It is evident from (34) that at the limit of v -}, o7, — c0 which means that deforming
an incompressible material (v = }) requires an infinitely larger force.

Equations (1), (2), (4), (5), (6), (8), (9), (11), (16) and (22), (24) or (34) for a uni-axial
stress case, a bi-axial stress case or a uni-axial strain case provide us with a set of ten
equations for the following ten dependent variables: p,, P, T, U,, X, o,, A,, S, A, and
U,. The independent variables are %, and ¢ for the gaseous phase and A, and ¢ for the
rubber. These equations have to be solved simultaneously for the following boundary
conditions:

Uglhy = Hy, t) = Up(hy = 0,8) = Uq(t), (36)
Up(h, = H,, 1) =0, (37)

where U,(h, = H,, 1) is the gaseous phase flow velocity at the solid plate d, at time ¢;
H, is the total mass of the gas which is contained between some reference section and
the plate; U.(h, = 0,1) is the velocity of the rubber leading edge (attached to the plate
d) at time ¢, and U, is the velocity of the solid plate. The value of U, can be evaluated
from the following equation;

Wy dUd(t)/dt = P(hg = Hg’ t)Ag_|Ux(hr =0, t)'Aro_Pl(Ag—Ar)’ (38)

where P, is the gas pressure (atmospheric) behind the rubber supported plate.
U.(h, = H_,1)is the velocity of the rubber trailing edge at time ¢ and H, is the total
mass of the rubber. Since it is attached to a rigid, stationary wall this velocity must
be zero.
Before attempting a solution of the previously described governing equations, the
set was transferred to a non-dimensional form using the following definitions
(asterisk indicates non-dimensional quantities)

ta te P o P P
=1 pF=_"0  px_ * = . pr=—f, pF="T=1,
£ L ' o Pg1 ay ProCh ¢ Pg1 " Pro

x*zfx—’ S*zi, ngﬂ, U;kzﬂ’ T 07,27’, Ak = Ar,

= Ly, a, Co ay 4,

B = b * h,

pglLlAg, r _proLroAro’

where indices 0 and 1 indicate pre-shock conditions in the rubber and the gas,
respectively. L, is some reference length in the gas, @, and ¢, are the undisturbed
speed of sound in the gas and the rubber, respectively. Other variables have been
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Shock wave colliston with a rubber wall 247

defined earlier. In order to use only one non-dimensional time ¢*, for both phases, the
reference length in the gas was chosen to be: L, = L a,/c,. The resulting set of non-
dimensional, conservation equations is the following.

Conservation of mass in the gas:

| 20z u@x—g’;—u] - 0. (39)
Definition of the gas velocity :
Uf(h¥, t*) = Qa*(hE, t*) /0t*. (40)
Conservation of momentum in the gas:
QUX(hE, t*) /0t = —OP*(h¥, t*)/0hk. (41)
Conservation of energy in the gas:
OT*(hy, 1%) /0% = — P*(hX, t*) OVE(h¥, t*) /0t*. (42)
Equation of state for the gas:
P(hE %) = (y— 1) T*(hX¥, t*)/ VERE, t¥). (43)
Conservation of mass for an incompressible rubber (i.e. p}¥ = 1):
a%[a_s *g};: ®) axn, t*)] 0, (44)
Definition of velocity in the rubber:
U (h¥, t*) = OS*(h¥, t*)/0t*. (45)

Definition of the extension ratio in the rubber:
A (R, t%) = OS*(hJ¥, t*)/0h}. (46)

(Note that A is non-dimensional by definition.)
Conservation of momentum in the rubber:

QU (B¥ 1%)Jot* = —|a (h*, 1*)| JOh*; (47)

and an additional constitutive equation, depending upon the loading mode, i.e. for
a uni-axial stress loading:

T (A, 1%) = (G pro €0) [ A (I, 1) = A2 (B 19)]; (48a)
for a bi-axial stress loading:

o7 (e, 1) = (G pro €0) [AL (Y, %) — AP (B, 1%)]; (480)
for a uni-axial strain loading:

2G[1+v]
ProCol 1 =202/ (1—v)]

o (b, t%) = [Ag (A, %) —1]. (48¢)
Equations (39) to (48) contain eight partial differential equations and two algebraic
equations for the following ten dependent variables: p¥, P*, T* Uk X* ok A, S*,
A} and Uf. The independent variables are: 2¥ and ¢* for the gas and 2* and ¢* for
the rubber. This set of non-dimensional equations should be solved for the boundary
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248 G. Mazor

conditions given in (36) to (38). These boundary conditions, in a non-dimensional
form, are

= S (), (49)

H " =00U;"(k;“ = 0,t%)
ay ay

U* (h* — e
AN pglLlAg
Ukhr =1,t%) = 0. (50)
U¥ can be evaluated from the following equation,

te G St g (”’2‘ -t ,t*>‘lo;';(k;*‘ =0, (é"‘—A:").
Lo pro Ay dt ProCoAro pglLlAg ProCe\A o

o

(51)

It is apparent from (39) to (51) that the following non-dimensional parameters
characterize the flow field resulting from the head-on collision of a normal shock
wave with a rubber supported rigid wall.

Wa/(Pro Ly Ayo), the ratio between the plate mass and the rubber mass.

Pa1 @1/ (Pro Co), the ratio between the gas and the rubber acoustic impedances.

a,/c,, the gas—rubber speed of sound ratio.

A,/A,y the area ratio between the gas flow cross section and the initial rubber
cross section.

G/(procy), the ratio between the rubber elasticity constant and the ‘dynamic
pressure’ in the rubber.

y = 0,/0,, the specific heats ratio of the gas.

In addition, it is obvious that the incident shock wave Mach number, M, = V,/a,,
is also an important parameter.

3. The numerical scheme

Equations (39) to (48) form a set of partial differential equations that cannot be
solved analytically. Therefore, a numerical scheme should be applied. Over the past
40 years a few schemes were developed that can handle flow discontinuities. In
particular, the concepts of artificial viscosity (von Neumann & Richtmeyer 1950),
the flux corrected transport (Boris & Book 1973) and the characteristic-based
methods (Godonov 1959; Glimm 1965) gave rise to a variety of useful tools for
obtaining numerical solutions for gas-dynamic equations. In the current research,
the artificial viscosity method is used. Written in lagrangian coordinates, the
resulting numerical scheme is convenient in handling moving interfaces such as that
between the gas and the rubber. In addition, a wide class of constitutive relations for
the rubber can be treated with the same scheme.

Some examples for using the artificial viscosity method can be found in the papers
of Brode (1955), Boyer et al. (1958), Boyer (1959), Brode (1959), and Rakib et al.
(1989).

When introducing the artificial viscosity terms into the governing equations only
the momentum and energy equations are modified. The two latter are given
subsequently (for simplicity, the asterisks were removed).

For the gaseous medium:

“onservation of momentum :

U, (A, t 0
4gétg’ ) _ —%[P(hg,t)-l-qg(hg,t)]. (52)

g
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Shock wave collision with a rubber wall 249
Conservation of energy:
0T (hg, 1)/ 0t = —[P(hg, t) + qq(hg, £)] OV, (hy, t) /08, (53)

where the artificial viscous pressure term for the gas is

[OgAhg]z[an(hg,t) 2 WVy(hg, 1)

V. (hyo 0) 7 when 8 <0,

. V. (h t (54)
0 when —E(aTg’——) >0,

where C, is a non-dimensional constant which controls the shock wave thickness in
the gas. The commonly used values for C, are between 1.5 and 2, thus extending the
shocks over 3 to 5 intervals of Ah,. It can be seen from equation (54) that the effect
of the artificial viscous pressure term g, is significant only in the shock regions.
For the rubber:
Conservation of momentum :

Uy (A, t) _

0
o = a1l 01+ 4,0 ) (55)

where the artificial viscous pressure term for the rubber is

[C.AR)? [a/\ (A ,t)]2 0A (A, t)
z L when —%2-F—+<0,
g, = { A (b, t) ot ot (56)
0 when 0A,(h,,t)/0t =

where C is a non-dimensional constant.

Equations (39), (40), (562), (63), (54), (43), (44), (45), (46), (55) and (56) are
converted into a set of central finite difference equations. As a result, a solution of
second-order accuracy in space and time (i.e. O[A¢]>*+0[AR]?) is obtained. Thus
knowing all the fluid properties up to (and including) some time ¢ = nAT, where » is
an integer, it is possible to calculate the fluid properties at the next time level, i.e.
t = (n+1) At. For the spatial differencing, a staggered grid is used. The velocity and
the eulerian distance are computed at JAk, while the rest of the fluid properties, such
as pressure and density, are calculated at (J+4) Ah, where J = 1,2,..., N and N is the
total number of space intervals. Details regarding the numerical scheme can be found
in Mazor (1989).

4. Results and discussion

The numerical scheme was used first for solving the case of head-on collision of a
normal shock wave with a rigid wall. This type of flow has an analytical solution and
the obtained numerical results agreed very well with the analytical solution.

In the following the results obtained for the case of a head-on collision between a
normal shock wave, propagating originally into a quiescent gas, and thereafter
colliding with a rubber supported rigid plate are shown and discussed. The solution
was obtained for an incident shock wave Mach number M, = 1.75. The initial flow
and rubber conditions were as follows: P, = 1 bart, U, =0, T} = 300 K, o, = 1 bar
and U,, = 0. The solution was conducted for three different modes of rubber loading,
i.e. uni-axial stress, bi-axial stress and uni-axial strain conditions. For all cases the

+ 1 bar = 10° Pa.
Phil. Trans. R. Soc. Lond. A (1992)
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Tigure 4. Schematic description of the wave patterns, in the gas and in the rubber, that
resulted from the head-on collision between a normal shock wave and the rubber-supported
plate.

following rubber physical properties were used: rubber initial length, L., = 0.25 m;
ratio between the flow cross-sectional area (gas) and the initial rubber-rod cross
section, A,/A.,, =2 (unlike the schematic description shown in figure 1¢);
rubber-metal-plate mass ratio w,/w, = 20; initial rubber density, p,, = 930 kg m~2,
rubber’s speed of sound, ¢, = 46 m s7!, ¢ = 4 bar and v = 0.495. For the cases of uni-
and bi-axial stress loadings, the pressure in the gas surrounding the rubber, behind
the plate, was kept constant and equal to the atmospheric pressure.

Before presenting detailed results, it is worthwhile to describe the shock wave
collision process with the rubber supported plate qualitatively. This process is shown
schematically in figure 4. Immediately after the collision (figure 4a) the incident
shock wave is reflected backwards as a shock wave S, and a transmitted shock wave
S,, propagates into the rubber rod. (Originally compression waves are transmitted
into the rubber. However, as will be shown subsequently, these compression waves
quickly coalesce into a shock wave.) The reflected shock wave S,, changes the gas
properties from state (2) to state (5), and the transmitted shock wave S;, changes the
rubber properties from state I to state II. Due to the high pressure behind the
reflected shock wave P, the plate d is accelerated. The plate assumes a velocity U,.
Once the transmitted shock wave reaches the rubber’s rear end, it is reflected (shock
wave Sy, in figure 4b) into state IT and changes it to a new state, state I11. Until the
shock wave (S,,) reaches the rubber’s leading edge, the plate d continues to move
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Shock wave collision with a rubber wall 251

from left to right and the rubber length is constantly reduced. Once the reflected
shock wave §,,, reaches the rubber’s leading edge, it is reflected backward as a
rarefaction wave, R, and a shock wave S,,, is transmitted into the gas. At this point
the rubber rod reaches its minimum length (and maximum compression). It is due to
this fact that a rarefaction is reflected into the rubber, R, and the plate d changes its
direction of motion; now it moves from right to left and the rubber expands back
towards its original length (figure 4 ¢). The transmitted shock wave S, which follows
the reflected shock wave S,, (figure 4c¢) separates between two flow states, (5) and (6).
When the rarefaction wave, which propagates in the rubber, reaches the rubber’s
rear-end, it is reflected as a rarefaction wave, R,, which separates between state IV
and a new state V (see figure 4d). Once it reaches the rubber leading edge, the rubber
reaches its maximum extension and at that point U, = 0. Thereafter, the direction
of the rubber front velocity changes; i.e. it starts moving from left to right and is
being compressed again. The rarefaction wave, R,, is reflected from the rubber
leading edge as a compression wave, C, and a transmitted rarefaction wave, R,, is
sent into the gas (figure 4¢). The rarefaction wave, R,, follows the transmitted shock
wave Sy, ; it separates between two flow states (6) and (7), see figure 4¢. In the rubber
compression process, maximum stress is expected as state I1I (figure 46 and ¢). The
highest pressure in the gas is experienced in state (6) (figure 4¢ and d).

When the incident shock wave hits the rubber supported plate, and reflects (as S,,
see figure 4a), compression waves propagate into the rubber. These compression
waves coalesce into a shock wave. It is of interest to know when and where this
change takes place.

Each pulse in the compression wave, called also a Riemann wave, propagates at
a velocity ¢ given by (Nowinski 1965)

€ = ug+ Ac,, (57)
where co = ((1/pyo) 00 JOA)E; (58)

¢, is the disturbance shift rate, ¢ is the absolute velocity of a Riemann wave and wug
is the absolute velocity of rubber particles. The other variables have been defined
earlier.

The rubber stress—strain relation is the key to whether or not pressure pulses,
generated at early times of the rubber compression, propagate slower than those
generated at later times. When pulses generated at early times of the compression
process propagate at a lower velocity than those produced at later times, the
formation of a shock wave is imminent.

From the stress—strain relations given in (22) and (24) (for a uni- and a bi-axial
loading cases, respectively) it is apparent that: 3o, /0A, > 0 and 0%0,/0A2 < 0. These
conditions guarantee that the compression waves coalesce into a shock wave;
Nowinski (1965). Mazor et al. (1988) showed that the distance measured from the
rubber-rod leading edge, at which the shock wave first appears S, is given by

8y = 2w,/ Py A, (59)

The time required for this to happen (measured from moment the incident shock
wave collided with the rubber-supported plate) can easily be deduced from the
relation S = ¢, ¢.

In (59) P, indicates the pressure obtained behind the shock wave reflected from a
rigid wall, w, and A4, are the mass and cross-sectional area of the rubber-supported
plate.
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Figure 5 Figure 6
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Figure 5. Gas pressure acting on the rubber supported plate as a function of time for different
modes of rubber loading. ————, Uni-axial stress; ———, bi-axial stress; ——, uni-axial strain;
—--—, rigid wall.
Figure 6. Velocity of the rubber supported plate as a function of time for different modes of rubber
loading. ————, Uni-axial stress; ———, bi-axial stress; ——, uni-axial strain.
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Figure 7. The stress at the rubber leading edge as a function of time for different modes of rubber
loading. ————, Uni-axial stress; ———, bi-axial stress; —— uni-axial strain.

Figure 8. The rubber stress, at its rear-end, as a function of time for different modes of rubber
loading. ————, Uni-axial stress; ———, bi-axial stress; , uni-axial strain.

For a given length L, of a rubber rod it is clear that a shock wave, in the rubber,
is expected when L., > S,.

For a uni-axial strain loading it is apparent from (34) that do,/0A, = const., and
therefore 0%c,/0A%2 = 0. In this case the conditions needed for the coalescence of
compression waves into a shock wave are not met and therefore, only compression
waves exist throughout the rubber. 1t is clear from (34) and (57) that for such a case

€2 = 261+ 0)/{pegl 1 — 202/ (1 —1)]}.

Thus all disturbances move with the same velocity. This was also observed by
Monti (1970) and Harding (1976), who referred to the head of these compression
waves as a ‘shock wave’.

(@) Numerical results

Some of the gas and the rubber properties at the various states (shown in figure 4)
are shown quantitatively in figures 5 to 11 for the initial values given earlier. In
figure 5 the pressure P, /P, acting on the plate supported by the rubber rod, is shown
as a function of the non-dimensional time tc,/L,.,, for the three different rubber
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Figure 9. The rubber strain, at its rear-end, as a function of time for different modes of rubber
loading. ————, Uni-axial stress; ———, bi-axial stress; ——, uni-axial strain.
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Figure 10. Changes in the rubber strain (a), stress (b), velocity (c) and stress in the y-direction, (d)
as a function of distance at ¢ = 0.8 ms after the head-on collision between the incident shock wave
and the rubber-supported plate. ————, Uni-axial stress; ———, bi-axial stress; , uni-axial
strain.

compression modes. For reference, the results obtained for a rigid wall are also
shown. It is evident that the gas pressure acting on the plate goes through the
following changes. Initially it is equal to P, then the reflected shock wave S,, (see
figure 4a) changes it to P;. Thereafter, the transmitted shock wave Sy, (see figure 4 ¢)
changes it to F;; and finally the transmitted rarefaction wave R, (see figure 4e)
changes it to P,. While P, and P, remain constant, P, decreases monotonically. For
all three loading modes the obtained values for P, are smaller than P,,. P, is the
pressure obtained behind a shock wave reflected from a rigid wall. The smallest value
of P, is obtained in the uni-axial stress loading while the largest in the case of a uni-
axial strain loading. On the other hand, in all the three loading modes F; is larger
than P . The largest Py is obtained in a uni-axial stress loading while the smallest in
a uni-axial strain loading. It is also apparent from figure 5 that states (5) and (6) exist
for a longer time in a uni-axial stress loading while the shortest duration belongs to
the case of uni-axial strain loading.

The plate velocity (normalized by the speed of sound in the rubber, ¢,) is shown as
a function of non-dimensional time in figure 6. The changes in the plate velocity are
clearly noticeable in this figure. Following the head-on collision the plate moves from
left to right (positive velocity). This motion continues until the reflected shock wave

Phil. Trans. R. Soc. Lond. A (1992)
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Figure 11. Changes in the rubber strain (a), stress (b), velocity (¢) and stress in the y-direction, (d)
as a function of distance at ¢ = 5 ms after the head-on collision between the incident shock wave
and the rubber-supported plate. ————, Uni-axial stress; ———, bi-axial stress.

in the rubber S;, (see figure 4b) reaches the plate. It stops the plate and imposes a
motion from right to left (negative velocity). This motion continues until the
reflected rarefaction wave in the rubber I, reaches the plate. When this occurs, the
direction of motion of the rubber-supported plate is reversed. When the plate passes
again through its original position it can be said that a cycle has been completed. It
is apparent from figure 6 that the waves move with the highest velocities in the case
of uni-axial strain loading since more cycles are completed for this case in a given
time.

Variations in the rubber stress at its leading edge, where it is attached to the plate,
are shown in figure 7. As could be expected, the largest stress is obtained for a uni-
axial strain loading, while the smallest is obtained in a uni-axial stress loading. Since

Ag/A,, = 2, it is expected that o, will be hlgher than P (shown in figure 5). It could
be expected (based upon the results shown in figure 7) that the smallest strain (A,)
be obtained for the uni-axial strain loading, while the largest would be reached for
the uni-axial stress loading.

The stress (oy,) and strain (A,,) experienced by the rubber at its rear-end, where it
is attached to a rigid wall, are shown in figures 8 and 9, respectively. It is apparent
from these figures that the largest stress, and the smallest strain are obtained for the
uni-axial strain loading, while the smallest stress and the largest strain, at the rubber
rear-end, are obtained for the uni-axial stress loading. It should be noted that the
stress experienced by the rubber at its rear-end is significantly larger than the gas
pressure near the plate (P, and/or Fy, see figure 5). It is also significantly larger than
the pressure obtained behind a reflected shock wave from a rigid wall under similar
initial conditions. The fact that o ;y; is significantly larger than P, was also observed
by Muirhead (1958), Monti (1970), Gelfand et al. (1975), Gelfand et al. (1984), and
Gvozdeva et al. (1986).

The numerical results can also be presented as a function of distance for a given
time. When the time is properly chosen, the changes in the flow/rubber properties
through any of the shock or rarefaction waves shown schematically in figure 4 can
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Figure 12. Changes in the rubber strain (a), stress (b), velocity (¢) and stress in the y-direction, (d)
as a function of distance at t = 7 ms after the head-on collision between the incident shock wave

and the rubber-supported plate. ————, Uni-axial stress; ———, bi-axial stress.
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Figure 13. Changes in the rubber strain (a), stress (b), velocity (¢) and stress in the y-direction, (d)

as a function of distance at ¢t = 8.2 ms after the head-on collision between the incident shock wave
and the rubber-supported plate. ————, Uni-axial stress; ———, bi-axial stress.

be obtained. In the following, changes in the rubber strain A, stress o, velocity U,,
and stress in the y-direction o, through S;, S;,, R and R, are shown. The distance §
is measured from the initial position of the plate, d. The initial conditions used for
obtaining the results shown in figures 10 to 13 are identical to those used before (in
figures 5-9). The results shown in figure 10a—d were obtained at an early time after
the head-on collision between the incident shock wave and the rubber supported
plate, i.e. t = 0.8 ms. At this early time the only discontinuity present in the rubber
is the transmitted shock wave (S, in figure 4a). As could be expected, the smallest
strain (A;;) and the largest stress (o) are experienced while applying a uni-axial
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strain loading (figure 10a, b). Minimum rubber velocity and maximum stress in the
y-direction are associated with a uni-axial strain loading (figure 10¢, d). For a uni-
axial stress loading one obtains the largest strain, A, and rubber velocity, U,, and the
smallest stress, o,. For this case, by definition o, = P,. It is also evident from figure
10a—d that, while in the uni- and bi-axial stress cases the transmitted wave is
definitely a shock wave, for the uni-axial strain loading a compression wave is
transmitted into the rubber rod. This compression wave moves much quicker than
the shock waves produced in the uni- and bi-axial stress loading cases.

At a later time (t = 5 ms after the head-on collision) the transmitted wave has
reached the rubber-rod rear-end and has been reflected back into the rubber as shown
schematically in figure 4b. Owing to the fact that the wave propagation velocity is
much smaller in the cases of uni- and bi-axial stress loading, relative to the case of
uni-axial strain loading, a comparison of the three cases at this (and later) time is
meaningless. This is so because at the considered time (¢t = 5 ms) the wave patterns
in the cases of uni-axial and bi-axial stress loadings are those shown in figure 40,
while in a uni-axial strain loading the wave pattern of figure 4 ¢ exists. For this reason
in figures 11 to 13 only the cases of uni- and bi-axial stress loadings are shown. In
figure 11a—d the increase in the rubber strain (figure 11a) and stress (figure 110)
through the reflected shock wave, S, and the decrease in the rubber velocity
(U,py; = 0, figure 11¢) are shown. The increase in the y-component of the rubber stress
through the reflected shock wave, is shown in figure 11d. By definition, o, = P, for
a uni-axial stress loading. Larger changes in the rubber properties while crossing the
reflected shock wave are experienced in the case of bi-axial stress loading.

Proceeding to a later time, after the head-on collision between the incident shock
wave and the rubber supported plate (¢ = 7 ms) brings us to the wave pattern shown
in figure 4¢, that is, a reflected rarefaction wave R propagates into the rubber. This
rarefaction wave and the changes in the rubber properties across it are clearly visible
in figure 12a-d. As expected, the magnitude of the rubber strain and stress decrease
across the rarefaction wave and its velocity increases (in an opposite direction to the
wave propagation, see figure 12¢). When the rubber properties presented in figure 12
are compared with appropriate properties shown before as a function of time, for
example, oyyqq in figure 126 with o, shown in figure 8, attention should be given to
the following fact. In figure 8 the properties marked as I1I start, for a bi-axial stress
loading case, at tc,/L,, ~ 1.245 and end at tc,/L,, ~ 2.05. It reaches a constant,
plateau level for 1.3 < tc,/L,, < 1.55. The results shown in figure 126 are given for
t = 7 ms which corresponds to fc,/L,, = 1.288; that is, before reaching the plateau
level and therefore, o;; shown in figure 126 is smaller than the plateau level value
of over 20 shown in figure 8.

Proceeding to a later time, ¢t = 8.2 ms after the head-on collision, the wave pattern
that appears in the rubber is the reflected rarefaction wave shown schematically in
figure 4d. This wave, and the rubber properties across it are shown in figure 13a-d.
The expected behaviour of a decrease in the rubber stress, strain and velocity (zero
velocity at the rigid wall) is evident in these figures. Should one proceed to even later
times, then the results typical to a compression wave (shown schematically in figure
4¢) would be obtained (see Mazor 1989).

So far numerical results based on the physical model developed in the preceding
section were presented. These results confirmed that the wave patterns in the gas and
in the rubber, which are shown schematically in figure 4, exist. It also provides us
with quantitative results regarding the gas and rubber properties across these waves.
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Figure 14. Schematic illustration of the EMI shock tube used for studying the interaction between
an incident shock wave and the rubber-supported plate. Distances in millimetres.

To remove any doubts regarding the validity of the proposed physical model
(summarized in (39) to (48)) and the numerical scheme used for its solution, it is
necessary to compare the numerical results with appropriate experimental findings.
This is the object of the following section.

(b) Experimental results

Experiments were conducted in the shock tube of the Ernst Mach Institute,
Freiburg. This shock tube has an inner diameter of 20 cm. The driver section is
180 ¢m long, the driven section is 888 cm long and the test section is located about
721 cm downstream of the diaphragm. A schematic description of this tube is shown
in figure 14. Cellulose acetate sheets were used as diaphragms for separating between
the two sections. This was proven to be an excellent diaphragm material since it is
brittle when stretched and has a high breaking velocity. The shock tube has a test
section equipped with plane, parallel windows of high optical quality glass. The
optical field of view is 200 mm X 110 mm and its depth is 40 mm. It is designed for
using ‘two-dimensional’ models. During experiments the gas flow and the rubber
behaviour were monitored by pressure measurements (using Kistler 606 pressure
transducers) and by high-speed shadowgraph photography. The shadowgraphs were
obtained with a 24 frame Cranz-Schardin Spark Camera. Twenty-four point spark
sources are focused onto the 24 objectives of the camera by use of a concave mirror.
At the instant of ignition a spark is projected onto the film through the objective into
which the image of the spark was copied. The advantage of this photographic
technique is the fact that there are no movable parts in the light rays path.
Therefore, the optical resolution is determined only by the aperture of the objectives.

From the three different modes of rubber loading (shown schematically in figure
1) the one in which significant deformation takes place, and is relatively easy to
investigate in a shock tube is the case of bi-axial stress loading. This case was
investigated in the experiments to be described. It was shown earlier that the
position where the transmitted compression waves coalesce into a shock wave is
given by (59). Therefore, a transmitted shock wave will be present in the rubber only
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Figure 15. A statically obtained stress-strain relation for a rubber specimen under a bi-axial
stress loading. o, Experiments (bi-axial stress); — , 0, = G, — A7 (G = 9.317 bar).

if L,, > S,. The criterion whether a shock or a compression wave exists in the rubber
depends upon the rubber physical properties (which influence c,), the plate mass (w,)
and its size (4,), and the incident shock wave Mach number (which dictates the value
of P,;). In choosing the rubber rod and the experimental conditions we tried to keep
both options, i.e. obtaining either a compression or a shock wave in the rubber. The
case when only compression waves exist in the rubber is easy to obtain; all that is
needed is that L,, < S,. Choosing a heavy plate and a short rubber rod suffice to
ensure this requirement. It is more difficult to ensure the existence of a shock wave
in the rubber because choosing a too long rubber rod and/or a very light plate will
result in the rubber buckling and the plate bending while carrying the incident shock
wave produced load. Based upon the above-mentioned requirements and limitations,
it was decided to use a rubber rod having a cross section of 4 cm x 4 em, length of
L,, = 10 cm and density of 1014 kg m™®. Its chemical composition is: natural rubber
sMr 100.0 gr, stearine 2.0 gr, zinc oxide 5.0 gr, carbon black Haf 10.0 gr, antioxidant
224b 2.0 gr, sulphur 2.75 gr, CBS 1.00 gr, TMTD 0.10 gr. This composition ensured
good elasticity; i.e. ability to experience large deformations. The chemical
composition of the rubber determines the value of ¢,. Thus, to cover, experimentally,
the two cases described above, namely : a case in which the compression waves do not
converge to a shock wave, and the case in which the compression waves coalesce into
a shock wave, the other parameters, i.e. M, w, and 4, had to be chosen properly. For
obtaining a transmitted compression wave throughout the rubber, the following
initial conditions were adopted: M = 1.55, wy = 0.123 kg and 4, = 0.0044 m*®. This
value of 4, is identical to the test-section cross-sectional area (4 cm x 11 ¢cm). For
obtaining the case where the transmitted compression wave coalesces into a shock
wave, in the rubber, the following initial conditions were adopted: M = 1.55,
wy = 0.032 kg and 4, = 0.0032 m®. The reduction of 4, was obtained with the aid of
a cookey-cutter which was mounted in the test section as is shown in figure 166.

To have a reliable stress—strain correlation, the manufactured rubber rod was
compressed in an Instron machine under bi-axial stress loading conditions. The
obtained results are shown in figure 15, a curve of the form o = G(A—-A"?),
appropriate to this type of loading, was fitted to these results. The maximum
deviation of the experimental results from the proposed curve fit is about 5%. The
fitted curve resulted in ¢ = 9.317 bar.
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Figure 16. Illustration of the rubber-rod, and the plate it supports, positioned inside the shock tube
test-section, (@) for obtaining a compression wave in the rubber, (b) for obtaining a shock wave in
the rubber.
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Figure 17. Pressure history on the rubber-supported plate. Analytical predictions: ————, PBj;
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Figure 18. Pressure history at the rubber’s rear-end.

In a bi-axial stress loading the rubber is free to expand in only one direction. For
reducing the friction between the rubber rod and the shock tube walls (windows), the
entire contact surface was lubricated. Many experiments were conducted; in the
following only two sets of results are shown. One for the case when the transmitted
compression waves in the rubber rod do not coalesce into a shock wave, and one for
the case when the compression waves do coalesce into a shock wave in the rubber.
Schematic illustration showing the installation of the rubber rod and the plate it
supports in the shock tube test section is shown in figure 16« and b.

We now consider the results of these two sets of experiments. The pressure
variations as a function of time, measured 35 mm ahead of the rubber supported
plate, are shown in figure 17. The initial conditions for this experiment were
T, =294.7K, P, = 0.99 bar and the measured shock wave Mach number was 1.557.
The rubber rod position in the considered experiment is shown in figure 16a. The
pressure jump through the incident shock wave is clearly visible (at ¢ ~ 0.5 ms).
Thereafter, the constant pressure behind the reflected shock wave (S,), P, can also be
seen very clearly. Both P,/P, and P;/P, agree well with the analytically evaluated
values for M, = 1.557. The third pressure increase (a more gradual increase starting
at ¢ & 2.2 ms) is higher than the numerically predicted value for P,. This pressure
increase is most probably a result of wave interactions which occur in the shock tube;
they are not included in the present numerical solution. It is clear from figure 165
that the flow cross section, of the tested gas, is reduced by the cookey-cutter. This
cookey-cutter splits the incident shock wave into two parts; one propagates below it,
towards the rubber supported plate, while the other propagates above it, towards the
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Figure 19. Shadowgraphs during and after the head-on collision between the incident shock
wave and the rubber supported plate: The time elapsed between successive frames is 400 ps.

supports of the cookey-cutter. Since the first support of the cookey-cutter is closer
to the cookey-cutter’s leading edge than the rubber supported plate (see figure 165),
the shock wave which reflects from it reaches the leading edge of the cookey-cutter
before the shock wave reflected from the rubber supported plate. Upon reaching the
cookey-cutter’s leading edge the first reflected shock wave diffracts over it. Part of
this diffracted shock wave collides, head-on, with the shock wave which was reflected
from the rubber supported plate. As a result of this collision a shock wave will move
towards the plate and will influence the reading of the pressure gauge which is located
near the rubber supported plate. Similar wave interactions are generated by the
major cookey-cutter, which cuts-out the test-section (rectangular) from the circular
driven section; see figure 14. In addition, head-on collision between the reflected
shock wave and the contact surface also generates waves which move towards the
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Shock wave collision with a rubber wall 261

Figure 20. Enlargement of shadowgraphs of figure 19: (@) frame no. 1, { = 2.78 ms;
(b) frame no. 4, t = 4 ms; (¢) frame no. 7, t = 5.2 ms; (d) frame no. 11, ¢t = 6.8 ms.

rubber-supported plate and affect the pressure field. All the above-mentioned
interactions are not included in the numerical simulation. Therefore, comparison
between experimental and numerical results should be limited, for the present
experiment, to ¢ < 2 ms, measured from the time S, first appears.

The pressure (stress) recording at the rubber rod rear-end, where it is attached to
a rigid wall, is shown in figure 18. It is clear that the pressure there increases
gradually through the compression waves to a maximum and thereafter gradually
decreases through the reflected rarefaction wave E,. The maximum value of the
rubber stress is almost five times higher than P, (see figures 17 and 18). When
released, some residual stress remains in the rubber (figure 18).

The response of the rubber rod to the incident shock wave load is shown in figure
19. This figure is a set of successive shadowgraphs taken 0.4 ms apart. The numbers,
1-24, appearing in each frame indicate the time progress. At the first shadowgraph
(no. 1 in figure 19) the incident shock wave is clearly seen just before it collides with
the rubber-supported plate. All other frames show the rubber rod at different stages
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Figure 21. Displacement of the rubber-supported plate; ——, numerical results;

0, experimental findings.

of its loading and release processes. The rubber compression along the z-axis and its
expansion along the z-axis are clearly visible in frames 3-11 of figure 19. Minimum
length, in the z-direction, and maximum expansion in the z-direction are evident in
the 11th frame (at about 4 ms after the head-on collision between the incident shock
wave and the rubber supported plate). Thereafter, the rubber rod starts to expand
in the x-direction due to the rarefaction wave which is reflected from its leading edge,
see figure 4¢. The dark stains shown in front of the plate in frames 7 to 15 and 24 of
figure 19 are silicone grease traces used for lubricating the rubber slide on the shock
tube windows. In addition to the expected behaviour of the rubber rod, which is
shown qualitatively in figure 19, one may obtain quantitative results of the rubber’s
front displacements during its loading and release processes. This can be done by
measuring the position of the plate at different times, see figure 20. 1t is apparent
from this figure that the length of the rubber rod was reduced to about 60 % of its
original length; this is quite a large deformation.

One of the assumptions used in the model proposed for the rubber behaviour was
that the rubber is incompressible. Because of this assumption, in a bi-axial stress
loading, A, =1/A,. From the results shown in figure 20 the validity of this
assumption can be checked. In figure 20d, where the rubber at about 4 ms after its
collision with the incident shock wave is shown, the rubber reached its maximum
compression; i.e. its original length is reduced by 4.08cm. Therefore, A, =
(10—4.08)/10 = 0.592. At this time the rubber experiences its maximum expansion
in the z-direction, which is AA, = 2.75. Therefore, A, = (4+2.75)/4 = 1.688.
These values of A, and A, perfectly agree with the incompressible condition, i.e.
A A, =1

The above-discussed experiment was simulated using the physical model and the
numerical code described earlier. The numerical results obtained for the displacement
of the rubber-rod leading edge S,, are shown in figure 21 as a solid line. The
experimental findings appear as small circles. The short lines above and below each
circle indicate the range of the experimental error involved in measuring S;. Good
agreement between experimental and numerical results is obtained for times
t < 5.5 ms. The reason for the difference between the two results is mainly due to the
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Figure 22. The gas pressure acting on the rubber-supported plate ; ——, numerical results;
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Figure 23. The stress at the rubber rear-end where it is attached to a rigid wall; —,
numerical results; o, experimental findings.

fact that in the numerical solution friction between the rubber rod and the shock
tube windows was neglected. (In addition, the interaction between the reflected
shock wave, S,, and the contact surface is not included in the numerical solution.)
Apparently, in spite of the lubrication used, at a high rubber compression the force
pressing the rubber to the windows is large and neglecting the friction force is not
justified. It should be noted that both the experimental and the numerical results
exhibit the same trend, i.e. similar amplitude and time period. It is very clear from
the experimental results that at the end of the pressure release (completion of one
cycle) the rubber rod does not return to its original length.

A comparison between the experimental and the numerical results obtained for the
gas pressure on the rubber-supported plate P, is shown in figure 22. Very good
agreement is evident in the time duration shown in this figure.

A comparison between the experimental and thie numerical findings for the rubber
stress, at its rear end where it is attached to a rigid wall, is given in figure 23. It is
evident from this figure that the head of the compression wave reaches the rear-end
of the rubber earlier in the actual experiment than in the numerical simulation. This
fact suggests that the actual value of ¢/, which determines the wave propagation
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Figure 24. Pressure history on the rubber-supported plate.
Figure 25. Pressure history at the rubber’s rear-end.

velocity in the rubber, is slightly larger than the value used in the numerical
simulation. The latter was deduced from static loading of the used rubber rod. It is
possible that a different value for ¢ should be used for a dynamic loading, or that the
value of ¢ has slightly changed due to previous experiments with the rubber rod.

The second set of experimental results were obtained for a case when the
transmitted compression waves coalesce into a shock wave in the rubber. The
installation of the rubber rod in the shock tube test section is shown schematically
in figure 166. The initial conditions used in this experiment are: P, = 0.996 bar,
T, = 2948 K, A, = 0.0032 m* and the measured incident shock wave Mach number
was M, = 1.562. The rubber geometry and chemical composition were the same as in
the previously described case.

The pressure history on the rubber supported plate is shown in figure 24. The
pressure jumps through the incident and the reflected shock waves are clearly visible
in this figure. These jumps agree well with the values calculated analytically using
M, = 1.562 and P, = 0.996 bar. Again, the pressures measured at t > 2 ms, in figure
24, are higher than the numerically predicted values for F;. This is due to wave
interactions in the shock tube which are not included in the physical model presented
earlier.

The pressure history (stress) at the rubber rear-end, where it is attached to a rigid
wall, is shown in figure 25. The plateau seen in the figure at 3 <t < 3.75 ms, which
was not observed in figure 18, is a clear evidence that a shock wave is reflected from
the rear-end of the rubber rod. Comparing figure 25 with 18 indicates that the
pressure (stress) rise in the former is quicker, and the pressure variations with time
is less symmetric than that shown in figure 18. This is a further indication that a
shock wave has been formed in the case described in figure 25, while a compression
wave existed in figure 18.

The rubber behaviour under loading, at different times, is shown in the
shadowgraph photographs of figure 26. In figure 26a the time interval between
successive frames is 25 ps; the total time covered in the flow history shown in this
figure is 575 ps. In frames 1--3 the incident shock wave, prior to its head-on collision
with the rubber supported plate, is seen. As should be expected, the rubber geometry
is unchanged in these frames. The reflected shock wave, S,, is visible in frames 4-11.
The rubber response to the head-on collision with the incident shock wave is not
instantaneous, as can be seen from figure 26a. The velocity of the incident shock
wave can be deduced from frames 1-3 and that of the reflected shock wave from
frames 4-11. They agree very well with the analytically predicted value for V, and V,.
For better visualizing the rubber deformation and measuring the plate displacement,
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Figure 26. () Shadowgraphs during and after the head-on collision between the incident shock
wave and the rubber-supported plate. The time elapsed between successive frames is 25 ps. (b)
Shadowgraphs during and after the head-on collision between the incident shock wave and the
rubber-supported plate. The time elapsed between successive frames is 400 ps.
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Figure 27. The rubber stress against distance for various times. ——, t = 2.93 ms; —-—,
t=373ms; ———, t =4.13ms; ——, { = 5.33 ms.

a longer time interval has to be covered. This is the case in figure 26 b, where the time
difference between successive frames is 400 us. The displacement of the rubber
supported plate, and the rubber rod deformation, is clearly visible in this figure.
Substituting the initial conditions of the considered experiment (M= 1.562,
A, = 0.0032 m?, wy = 31.76 g) in (59) yields that the transmitted shock wave should
be formed at a distance of about 5.8 cm, measured from the initial position of the
rubber-rod leading edge.
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Figure 28. Single shadowgraphs showing specific events from the incident shock wave collision with
the rubber-supported plate (frames 1, 3, 4, and 7 of figure 265). (@) Frame 1, t = 2.93 ms; (b) frame
3, t=3.73 ms; (c) frame 4, t = 4.13 ms; (d) frame 7, ¢t = 5.33 ms.

In figure 27 numerical results obtained for the rubber stress, at four different
times: ¢t = 2.93 ms (which corresponds to the event shown in frame 1 of figure 26b;
i.e. before collision), 3.73 ms (which corresponds to frame 3 of figure 265), 4.13 ms
(which corresponds to frame 4, in figure 265) and 5.33 ms (which corresponds to
frame 7 in figure 26b) are shown. It is apparent that at ¢ = 3.73 ms the transmitted
compression wave head is located at § & 5.3 cm. This is verified in figure 285 where
a change in the rubber’s width is evident at S &~ 5 cm. The position along the x-axis
where changes in the width of the rubber rod are first noticed is most likely the
location of the head of the compression wave. For { = 4.13 ms it is clear from figure
27 that the compression wave coalesces to a shock wave whose position is at
S~ 7.5 cm. (Now the changes in the rubber width are larger than those shown in
frame 3, figure 286 ; this confirms the existence of a shock wave in frame no. 4.) It
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Figure 29. Pressure history on the rubber supported plate; ——, numerical results ; 0, experimental
findings.
Figure 30. Stress at the rubber rear-end where it is attached to a rigid wall; ——, numerical results;

0, experimental findings.

is apparent from figure 28¢ that the shock wave position is roughly at S &~ 7.5 cm. At
t = 5.33 a reflected shock wave propagates in the rubber (figure 27); for this time
figure 284 indicates the existence of the reflected shock wave. It is evident from
figure 285, ¢ that there is a fairly good agreement between the numerically predicted
position of the shock wave and the experimental findings.

A comparison between the numerical and experimental results for the pressure
acting on the rubber-supported plate is available in figure 29. The experimental
points were deduced from figure 24; the pressure variations are terminated at
t &~ 4.5 ms (about 1.5 ms after the head-on collision) since at later times the recorded
pressure includes the wave interactions which, as mentioned earlier, are not included
in the present physical model. Good agreement between the two results is evident
from figure 29.

Experimental and numerical results obtained for the rubber stress at its rear end,
where it is attached to a rigid wall, are given in figure 30. Fair agreement is witnesed
for the early part of the rubber compression process. The agreement deteriorates at
a later time due to friction between the rubber rod and the shock tube windows and
the pressure increase on the plate due to the interaction between the reflected shock
wave and the contact surface. Both of these effects are not included in the numerical
solution. Comparing the results shown in figure 30 with those of figure 23 indicates
that the raise in the rubber stress is much quicker in the former and that it reaches
a constant value for a short time. This is a further indication that a shock wave is
reflected from the rear-end of the rubber rod.

5. Summary and conclusions

A physical model for describing the head-on collision process between a normal
shock wave and a rubber supported plate was developed. This model was solved
numerically for three different modes of rubber loading. The numerical solution
provides information regarding the gas flow and the rubber properties at different
times and locations. It was found that the speed of the wave propagation, in the
rubber, for the case of uni-axial strain loading is much larger than that obtained for
uni- and bi-axial stress loading cases. At an early time after the head-on collision
higher pressure behind the reflected shock wave was obtained in the case of uni-axial
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strain loading, as compared with the other two loading cases. However, in all three
loading modes the pressures obtained behind the reflected shock wave were lower
than that obtained in a similar reflection from a rigid wall. At a later time after the
collision, due to the transmitted shock wave, the pressure acting on the rubber-
supported plate was higher than that obtained in a similar reflection from a rigid
wall. Furthermore, now the highest pressure (F;) is obtained in the uni-axial stress
loading case while the lowest corresponds to the uni-axial strain loading case. The
stresses in the rubber leading edge (o 4) and in its rear end (o ,,) were significantly
higher than the pressure acting on the rubber supported plate () and/or the
pressure behind a reflected shock wave in a similar rigid wall case. It should be noted
here that both o, and o, are strongly affected by the area ratio 4,/4.. The
obtained results should be used only for the specified area ratios. In the examples
solved the highest rubber stress, and the smallest strain, were obtained in the uni-
axial strain loading while the lowest stress, and the highest strain, were found in the
uni-axial stress loading case.

The case of bi-axial stress loading was investigated both numerically and
experimentally. Good agreement was obtained between the experimental and
numerical results for the plate displacement, the pressure behind the reflected shock
wave, and the stress at the rubber-rod rear-end. This agreement confirms the validity
of the proposed model and the reliability of the numerical scheme used for its
solution.

When presenting the numerical results for the rubber variables as a function of
distance, for different times, the existence of the wave patterns, shown schematically
in figure 4 was confirmed. Repeating this computational procedure for the gaseous
phase would confirm the expected wave patterns in this phase (see Mazor 1989). It
was also shown that by proper selection of the physical properties of the rubber and
the plate it supports one could ensure that the transmitted compression wave in the
rubber rod will either remain a compression wave or coalesce into a shock wave.

This research was supported by a grant from the German-Israeli Foundation for Scientific
Research and Development. Their support is acknowledged with thanks. The typescript of the
present paper was prepared while one of the authors (0.1.) was a visiting professor at the Shock
Wave Research Center of the Tohoku University in Sendai, Japan. This stay made possible the
requisite concentration and clear thought by virtue of which the completion of this work was made
possible. The author is thankful for this opportunity.
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‘igure 19. Shadowgraphs during and after the head-on collision between the incident shock
ave and the rubber supported plate: The time elapsed between successive frames 1s 400 ps.
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Figure 20. Enlargement of shadowgraphs of figure 19: («) frame no. 1, t = 2.78 ms;

(b) frame no. 4, t = 4 ms: (¢) frame no. 7 b.2ms; (d) frame no. 11, { = 6.8 ms.
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igure 28. Single shadowgraphs showing specific events from the incident shock wave collision with
he rubber-supported plate (frames 1. 3, 4, and 7 of figure 265). (a) Frame 1, { = 2.93 ms: (b) frame
=3T3 ms; (c) irame 4, {t = 4.13 ms: (d) trame 7, { = 5.33 ms.
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